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Abstract

In recent years, immune checkpoint inhibitors have been shown to be effective in treating manifold types of
cancer but less robust in colorectal cancer (CRC). While, the subgroup of CRC with microsatellite instability (MSI;
also termed as mismatch repair deficient) showed a moderate response to Pembrolizumab in a single arm phase II
clinical trial, microsatellite stable (MSS) cancers were unresponsive. Possible mechanisms that affect immune
response in colorectal cancer will be reviewed in this article. We will also propose that histone deacetylase (HDAC)
inhibition may reverse the immune editing commonly seen in advanced CRC and render them sensitive to immune
checkpoint blockade.
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Introduction
Immunotherapy, working through immune checkpoint blockade

has achieved notable responses in multiple tumor types including
malignant melanoma, renal cell carcinoma, non-small cell lung cancer,
bladder carcinoma, Hodgkin’s lymphoma, triple-negative breast
carcinoma as well as head and neck cancer [1]. However, CRC appears
to be one of the tumor types that shows a poor response to immune
checkpoint inhibitors, apart from the MSI CRC subtype which
accounts for about 5% [2] of advanced and metastatic CRC [3]. So why
don’t immune checkpoint inhibitors work in MSS CRC?

In this brief review we will consider the following:

a) Results of clinical trials of colorectal cancer with immune
checkpoint inhibitors

b) Mechanisms underlying immune escape by CRC through
immunoediting, which is often caused by down regulating MHC class I
and class II; down regulation of antigen processing TAP enzymes;
decreased expression of co-stimulatory molecules; infiltration of the
tumor by regulatory T cells.

c) Hypothesis that histone deacetylase (HDAC) inhibitors reverse
immunoediting.

Results of clinical trials with immune checkpoint inhibitors
Two phase I clinical trials of anti PD-1 (BMS936558, Nivolumab)

and anti PD-L1 (BMS936559) antibodies were carried out in a variety
of cancer types including colorectal cancer (19 colorectal cancer out of
296 cancer patients and 18 colorectal cancer out of 207 cancer patients
respectively). Notably, only 1 patient from the metastatic-CRC cohort
in the BMS936558 clinical trial, who had a PD-L1 positive tumor,
showed a complete response after 6 months’ treatment of BMS936558
and had no signs of tumor recurrence after 3 years. This patient’s
tumor was also mismatch repair deficient [4-6].

Since somatic mutations have the potential to encode “non-self ”
immunogenic antigens, it was hypothesized those tumors with
mismatch-repair deficiency that can lead to thousands of somatic
mutations may be responsive to immune checkpoint inhibitors. 41
patients with or without mismatch repair deficient advanced cancer
were recruited into a phase II clinical trial of Pembrolizumab
conducted by Le et al. Patients were treated with Pembrolizumab
intravenously 10 mg/kg every 2 weeks. They were separated into 3
cohorts of MMR-deficient colorectal cancer, MMR-proficient
colorectal cancer and MMR-deficient non-colorectal cancer. The
primary end point for the first two cohorts was the immune-related
objective response rate and the immune-related progression-free
survival rate at 20 weeks. The primary endpoint for the third cohort
was the immune-related progression-free survival rate at 20 weeks.

The results showed that the 2 groups with MMR-deficient colorectal
or non-colorectal cancer had the higher rate of immune-related
objective response (40% and 71%) and immune-related progression-
free survival at 20 weeks (78% and 67%) compared to the MMR-
proficient colorectal cancer group (0% and 11%).

Interestingly, 1782 versus 73 somatic mutations per tumor in
mismatch repair-deficient tumors and mismatch repair-proficient
tumors was demonstrated (P=0.007), and higher somatic mutation
loads were associated with prolonged progression-free survival
(P=0.02). Rash/pruritus, pancreatitis, and thyroiditis/hypothyroidism
were found to be the most common treatment-related adverse events,
occurring in approximately 10% of patients. This phase II clinical trial
proved that patients with mismatch-repair deficient tumors associated
with a heavy load of somatic mutations respond to anti-PD1 therapy
[3]. Based on this promising study, phase III trials investigating the
effect of anti-PD-1 therapy in MSI-H colorectal cancer have been
initiated.

Mechanisms of cancer immune evasion in colorectal cancer
Cancer immunoediting is the term used to describe the dual role of

the immune system in host- protection and tumor-sculpting. It
consists of 3 phases (also known as the 3Es): elimination, equilibrium,
and escape [7,8].
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In the elimination phase, congenital and adaptive immune cells
recognize and destroy the accumulating tumor cells before the clinical
manifestations occur. When the tumor cells break through the
elimination phase and proceed into the equilibrium state,
immunologic mechanisms begin to work to prevent tumor outgrowth
[9,10]. Tumors escape due to the ever growing population and the
changes in their response to immunoselective pressures and/or to
increased tumor-induced immunosuppression or immune system
deterioration. [8,11] There are multiple possible mechanisms causing
immunoediting: 1) Down regulation of HLA-I and 2. 2) Down
regulation of antigen processing TAP enzymes. 3) Decreased
expression of co-immunostimulatory molecules; and 4) Infiltration of
the tumor by regulatory T cells.

Down regulation of human leukocyte antigen class I: According to
Menon et al. over 70% of colorectal cancers undergo a downregulation
of human leukocyte antigen class I, the so called human MHC [12].
Thus, tumor cells with downregulated but not completely depleted
HLA-1 expression can avoid T cell and NK cell-mediated immune
surveillance, and may be to some extent correlated with poor
prognosis [13]

Also, a study with large sample numbers (462 tumors) reported that
down regulation of MHC-I is an independent marker for poor
prognosis in early stage colorectal cancer. This implies that if the
immune response does occur in early stage disease, it may eliminate
micrometastases which have an intact antigen presenting system.

Down regulation of antigen processing tap enzyme: Crucial for the
process of translocating peptide from cytoplasm to the endoplasmic
reticulum(ER), the transporter associated with antigen processing
(TAP) system is another factor influencing immunoediting. TAP
transporters load peptide fragments from tumor cellular antigens onto
major histocompatibility complex (MHC) I molecules. Loaded MHC-I
leave the ER and display the antigen on the cell surface, permitting
their recognition by CD8+ T lymphocytes, which can induce a cellular
immune response and cell destruction. [14].

Ras oncogenic transformation, found in approximately 40% of CRC,
is associated with reduced TAP and proteasome subunit low molecule
protein (LMP) mRNA expression. This results in incomplete peptide
transport and peptide loading of MHC class I molecules, resulting in
reduced stability of expression of the MHC class I complex on the cell
surface. [15] Down regulation of or depleted TAP1 has been found in
different tumor types with frequencies ranging from 10 to 84%.
[16-20] Interestingly, interferon-gamma [15] and interferon- alpha
[21] treatment can enhance expression of TAP, low molecular protein
(LMP) and MHC class I molecules in parental and ras transformed
fibroblasts.

Kasajima et al. explored the in vivo association of TAP and MHC
class I antigen and their impact on prognosis in colorectal cancer.
Immunohistochemical assessment of TAP1, TAP2 and MHC class I
antigen expression in 336 sporadic colorectal carcinomas was
performed in this study (Figure 1). They found TAP1 and TAP2
expression to be significantly associated with MHC class I antigen
expression (P<0.001). Increased density of CD8 (+) TIL was
predominantly found in TAP1, TAP2 and MHC class I antigen-
positive cases, and tumors with CD8+ lymphocytic infiltration had an
improved prognosis [22].

Decreased expression of co-stimulatory molecules: The interaction
between co-stimulatory molecules expressed on the cell surface of
antigen presenting and tumor cells and the receptors on immune cells

activate a range of intracellular signals to activate T lymphocytes
[24,25]. Common co-stimulatory molecules include B7-1/B7-2: CD28/
CTLA-4 family and TNF: TNFR family. Different pairs of
costimulatory molecules have different ways to interact with each
other, for example, one receptor may be activated with one type of
ligand while restricted by other type of ligand or one receptor may be
linked to two or more ligands [26-28]. Most tumors lack or
downregulate the expression of positive costimulatory molecules such
as B7-1 (CD80) and B7-2 (CD86) [29-33].

Figure1: Proteins involved in the immune interaction between
tumor cells and lymphocytes [23].

Infiltration of the tumor by t regulatory cells: Regulatory T cells act
to down regulate effector immune responses. They have a distinct
phenotype with the expression of CD4, CD25 and FoxP3. Most studies
have concluded that high levels of infiltrating regulatory T cells are
correlated with poor prognosis in many kinds of tumors including
colorectal cancer [34-38]. However, some studies showed that high
density infiltration of T reg cells are correlated with an improved
outcome in treating cancer [39] which may be explained by differences
in methodological sub classification of T reg cells. Both murine models
and human in vitro models show that depletion of T reg cells induces
immune responses against tumor-associated antigens, so it is
mechanistically plausible that regulatory T cells are correlated with
poor prognosis in colorectal cancer [40-43].

Mismatch repair deficiency (Microsatellite instability)
Deficient mismatch repair (dMMR or microsatellite instability, MSI)

is one of the key genetic mechanisms driving the occurrence and
progression of CRC. There are several genes controlling DNA
mismatch repair function including MSH2, MLH1. One consequence
of dMMR is that these tumor cells carry a very high neo antigen load
due to the high frequency of mutations, increasing the likelihood of
immune recognition. Perhaps unsurprisingly, microsatellite unstable
colon tumors appear have a strong lymphocyte infiltration [44] and
have a significantly better prognosis than MSS colorectal cancer,
especially in stage II disease [45].
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Tumor lymphocytic infiltration
Takemoto showed that stroma-infiltrating lymphocytes (SIL) were

found in approximately the same number in high grade microsatellite
instability (MSI-H) patients (20%) and low grade microsatellite
instability (MSI-L) or MSS tumors (12.8%). However, significant
differences of intra-tumor cell-infiltrating lymphocytes (ITCIL) were
shown between MSI-H CRC and MSI-L or MSS CRC patients (41.7%
vs. 4.3%, respectively (P<0.001)). Furthermore, the prognosis of the
tumors with higher ITCIL counts was better than the less infiltrated
ones. [46] In addition, increased PD-L1 expression has been found at
the invasive edge of MSI-H tumors.

All the characteristics mentioned above, as well as the recent
definition of highly immunogenic neo-antigens expressed in MSI-H
tumor cells, suggest that MSI-H CRCs induce a protective host
immune response that may reduce the incidence of metastasis
formation and which might explain the better outcome in this patient
group [47-49].

Can we reverse immunoediting by treating with histone
deacetylase (hdac) inhibitors

Researchers have hypothesized that strategies which increase
expression of T-cell chemokines and T-cell infiltration of tumors
would be capable of enhancing response to PD-1 blockade. There is
evidence to suggest that histone deacetylase inhibitors (HDACi)
[50,51] are capable of inducing expression of these chemokines in
tumor and increasing immune recognition.

It has been reported that increased histone acetylation induced by
HDAC inhibitors results in the increase expression of MHC molecules
and other molecules involved in antigen processing and presentation
[52-55]. Also it can increase expression of tumor antigens recognized
by cytotoxic T lymphocytes (CTLs) and ligands for NK activating
receptors [56,57]. The HDACi romidepsin, induced a strong anti-
tumor response against KRAS mutant NSCLC tumors in mice which
correlated with T cell infiltration of the tumor, and CD8 T-cell
infiltration in human lung tumors has been shown to increase after
HDACi vorinostat treatment [58,59]. The combination of the HDAC I
depsipeptide and very low concentrations of the cytotoxic
antimetabolite 5-fluorouracil (5-FU) induces apoptosis synergistically
and up regulates MHC class II in human colon cancer HCT-116 cells
[60].

Based on these and many other preclinical study results, several
clinical trials have been initiated to evaluate whether the combination
of HDAC inhibitors and anti-PD1 therapies can improve tumor
responses by enhancing the CD8 T cell infiltration. (NCT02638090,
NCT02437136, NCT02697630, NCT01928576, NCT024353620 and
NCT02708680) These trials may give an indication if HDAC inhibitors
can improve response to anti-PD1 agents in the coming future.

Conclusion
As mentioned in this article, it is the loss of function of cellular

immune system, that complies possible reason causing no response to
checkpoint blockade therapy in colorectal cancer. During the cell
deterioration process of CRC, the deficiency of immuno stimulatory
signal presentation and the activation of immunological checkpoints
may suppress the immunosurveillance [61]. One clinical approach to
targeting the mechanisms that underlie immune evasion in colorectal

cancer may be to combine immune checkpoint and HDAC inhibitors
to restore immunoreactivity and enhance tumor cell kill.
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